Neural Computations in a Dynamical System with Multiple Time Scales
نویسندگان
چکیده
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
منابع مشابه
Computing networks: A general framework to contrast neural and swarm cognitions
This paper presents the Computing Networks (CNs) framework. CNs are used to generalize neural and swarm architectures. Artificial neural networks, ant colony optimization, particle swarm optimization, and realistic biological models are used as examples of instantiations of CNs. The description of these architectures as CNs allows their comparison. Their differences and similarities allow the i...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملDiscrete Time Analysis of Multi-Server Queueing System with Multiple Working Vacations and Reneging of Customers
This paper analyzes a discrete-time $Geo/Geo/c$ queueing system with multiple working vacations and reneging in which customers arrive according to a geometric process. As soon as the system gets empty, the servers go to a working vacations all together. The service times during regular busy period, working vacation period and vacation times are assumed to be geometrically distributed. Customer...
متن کاملVibration Analysis of a Nonlinear System with a Nonlinear Absorber under the Primary and Super-harmonic Resonances (TECHNICAL NOTE)
Abstract In vibratory systems, linear and nonlinear vibration absorbers can be used to suppress the primary and super-harmonic resonance responses. In this paper, the behavior of a nonlinear system with a nonlinear absorber, under the primary and super-harmonic resonances is investigated. The stiffnesses of the main system and the absorber are cubically nonlinear and the dampers are linear. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016